
351 

 

 

 25 An Expert System Shell 
 

 
Chapter 

Objectives 
Completing the meta-interpreter for rule systems in Java  
Full backtracking unification algorithm  
 A goal-based reasoning shell 
 An example rule system demonstration 
The extended functionality for building expert systems 
 Askable predicates 
 Response to how and why queries 
 Structure presented for addition of certainty factors 

Chapter 
Contents 

25.1 Introduction: Expert Systems 
25.2 Certainty Factors and the Unification Problem Solver 
25.3 Adding User Interactions 
25.4 Design Discussion 

 

 

 25.1 Introduction: Expert Systems 

 In Chapter 24, we developed a unification-based logic problem solver that 
solved queries through a depth-first, backward chaining search. In this 
chapter, we will extend those classes to implement two features commonly 
found in expert-system shells: the ability to attach confidence estimates, or 
certainty factors, to inferences (see Luger 2009 for more on certainty 
factors), and the ability to interact with the user during the reasoning 
process. Since all the classes in this chapter will extend classes from the 
unification problem solver, readers must be sure to have read that chapter 
before continuing. 

In developing the expert system shell, we have two goals. The first is to 
explore the use of simple inheritance to extend an existing body of code. 
The second is to provide the reader with a start on more extensive 
modifications to the code that will be a valuable learning experience; the 
exercises will make several suggestions for such extensions. 

Certainty 
Factors 

The first extension to the reasoner will be to implement a simplified 
version of the certainty factor algebra described in Luger (2009). Certainty 
factors will be numbers between -1.0 and 1.0 that measure our confidence 
in an inference: -1.0 indicates the conclusion is false with maximum 
certainty, and 1.0 means it is true with maximum certainty. A certainty 
value of 0.0 indicates nothing is known about the assertion. Values 
between -1.0 and 1.0 indicate varying degrees of confidence. 

Rules have an attached certainty factor, which indicates the certainty of 
their conclusion if all elements in the premise are known with complete 
certainty. Consider the following rule and corresponding certainty factor: 

If p then q, CF = 0.5 
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This means that, if p is true with a confidence of 1.0 (maximum 
confidence), then q can be inferred to be true with a confidence of 0.5. 
This is the measure of the uncertainty introduced by the rule itself. If our 
confidence in p is less, than our confidence in q will be lowered 
accordingly. 

In the case of the conjunction, or “and,” of two expressions, we compute 
the certainty of the conjunction as the minimum of the certainty of the 
operands. Note that if we limit certainty values to 1.0 (true) and -1.0 (false), 
this reduces to the standard definition of “and.” For the “or” operation, 
the certainty of the expressions is the maximum of the certainty of its 
individual operands. The “not” operator switches the sign of the certainty 
factor of its argument. These are also intuitive extensions of the boolean 
meaning of those operators. 

Certainty factors propagate upward through the inference chain: given a 
rule, we unify the rule premises with matching subgoals. After inferring the 
certainties of the individual subgoals, we compute the certainty of the 
entire rule premise according to the operators for and, or, and not. 
Finally, we multiply the certainty of the premise by the certainty of the rule 
to compute the certainty of the rule conclusion. 

Generally, certainty factor implementations will prune a line of reasoning if 
the certainty value falls below a certain value. A common pruning value is 
if the certainty is less than 0.2. This can eliminate many branches of the 
search space. We will not include this in the implementation of this 
chapter, but will leave it as an exercise. 

25.2 Certainty Factors and the Unification Problem Solver 

 Our basic design strategy will be to make minimal changes to the 
representation of expressions, and to make most of our changes to the 
nodes of the solution tree. The reasoning behind this approach is the idea 
that the nodes of the solution tree define the inference strategy, whereas 
logical expressions simply are a statement about the world that is 
independent of its truth or reasoning. As a variation on truth-values, it 
follows that we should treat certainty calculations as a part of the system’s 
inference strategy, implementing them as extensions to descendents of the 
class AbstractSolutionNode. This suggests we take SimpleSentence 
and basic operators to represent assertions independently of their certainty, 
and avoid changing them to support this new reasoning strategy. 

The classes we will define will be in a new package called 
expertSystemShell. To make development of the expert system shell 
easier to follow, we will name classes in this package by adding the prefix 
“ES” to their ancestors in the package unificationSolver defined in 
the previous chapter. 

Adding 
Certainty 

Factors to 
Expressions 

We will support representation of certainty factors as an extension to the 
definition of Rule from the unification problem solver. We will define a 
new subclass of Rule to attach a certainty factor to the basic 
representation. We define ESRule as a straightforward extension of the 
Rule class by adding a private variable for certainty values, along with 
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standard accessors: 
public class ESRule extends Rule  

{ 

 private double certaintyFactor; 

 public ESRule(ESSimpleSentence head,  

   double certaintyFactor)  

 { 

  this(head, null, certaintyFactor); 

   } 

 public ESRule(ESSimpleSentence head, Goal body,  

   double certaintyFactor)  

 { 

  super(head, body); 

      this.certaintyFactor = certaintyFactor; 

   } 

   public double getCertaintyFactor() 

 { 

      return certaintyFactor; 

   } 

  protected void setCertaintyFactor(double value) 

 { 

    this.certaintyFactor = value; 

   } 

} 

Note the two constructors, both of which include certainty factors in their 
arguments. The first constructor supports rules with conclusions only; 
since a fact is simply a rule without a premise, this allows us to add 
certainty factors to facts. The second constructor allows definition of full 
rules. An obvious extension to this definition would be to add checks to 
make sure certainty factors stay in the range -1.0 to 1.0, throwing an out of 
range exception if they are not in range. We leave this as an exercise. 

This is essentially the only change we will make to our representation. Most 
of our changes will be to the solution nodes in the proof tree, since these 
define the reasoning strategy. To support this, we will define subclasses to 
both SimpleSentence and And to return the appropriate type of solution 
node, as required by the interface Goal (these are all defined in the 
preceding chapter). The new classes are: 

public class ESSimpleSentence extends SimpleSentence 
{ 

 public ESSimpleSentence(Constant functor,  

   Unifiable... args)  

 { 

  super(functor, args); 

  } 
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  public AbstractSolutionNode getSolver(RuleSet  

   rules, SubstitutionSet parentSolution) 

 { 

  return new     

   ESSimpleSentenceSolutionNode(this,  

    (ESRuleSet)rules, parentSolution); 

  } 

}  

public class ESAnd extends And  

{ 

   public ESAnd(Goal... operands)  

 { 

   super(operands); 

  } 

   public ESAnd(ArrayList<Goal> operands)  

 { 

   super(operands); 

  } 

  public AbstractSolutionNode getSolver(RuleSet  

  rules, SubstitutionSet parentSolution) 

 { 

   return new ESAndSolutionNode(this, rules,  

   parentSolution);  

 } 

}  

These are the only extensions we will make to the representation classes. 
Next, we will define reasoning with certainty factors in the classes 
ESSimpleSentenceSolutionNode and ESAndSolutionNode. 

Reasoning with 
Certainty 

Factors 

Because the certainty of an expression depends on the inferences that led 
to it, the certainty factors computed during reasoning will be held in 
solution nodes of the proof tree, rather than the expressions themselves. 
Thus, every solution node will define at least a goal, a set of variable 
substitutions needed to match the goal during reasoning, and the certainty 
of that conclusion. The first two of these were implemented in the 
previous chapter in the class AbstractSolutionNode, and its 
descendents. These classes located their reasoning in the method, 
nextSolution(), defined abstractly in AbstractSolutionNode. 

 Our strategy will be to use the definitions of nextSolution() from the 
classes SimpleSentenceSolutionNode and AndSolutionNode 
defined in the previous chapter. So, for example, the basic framework of 
ESSimpleSentenceSolutionNode is: 
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public class ESSimpleSentenceSolutionNode  

 extends SimpleSentenceSolutionNode  

 implements ESSolutionNode  

{ 

 private double certainty = 0.0; //default value 

   public ESSimpleSentenceSolutionNode( 

  ESSimpleSentence goal, ESRuleSet rules, 

   SubstitutionSet parentSolution)  

 { 

   super(goal, rules, parentSolution); 

 } 

 public synchronized SubstitutionSet  

  nextSolution() 

    throws CloneNotSupportedException  

 { 

  SubstitutionSet solution =  

   super.nextSolution(); 

  // Compute certainty factor for the solution  

  // (see below)  

   return solution; 

 } 

 public double getCertainty()  

 { 

   return certainty; 

  } 

 } 

This schema, which will be the same for the ESAndSolutionNode, 
defines ESSimpleSentenceSolutionNode as a subclass of the 
SimpleSentenceSolutionNode, adding a member variable for the 
certainty associated with the current goal and substitution set. When 
finding the next solution for the goal, it will call nextSolution() on the 
parent class, and then compute the associated certainty factor.  

The justification for this approach is that the unification problem solver of 
chapter 24 will find all valid solutions (i.e. sets of variable substitutions) to 
a goal through unification search. Adding certainty factors does not lead to 
new substitution sets – it only adds further qualifications on our 
confidence in those inferences. Note that this does lead to questions 
concerning logical not: if the reasoner cannot find a set of substitutions 
that make a goal true under the unification problem solver, should it fail or 
succeed with a certainty of -1.0? For this chapter, we are avoiding such 
semantic questions, but encourage the reader to probe them further. 

We complete the definition of nextSolution() as follows 
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public synchronized SubstitutionSet nextSolution() 

   throws CloneNotSupportedException  

{ 

 SubstitutionSet solution = super.nextSolution(); 

 if(solution == null) 

  { 

   certainty = 0.0; 

   return null; 

  } 

  ESRule rule = (ESRule) getCurrentRule();  

  ESSolutionNode child =  

  (ESSolutionNode) getChild();      

 if(child == null)  

 { 

  // the rule was a simple fact 

   certainty = rule.getCertaintyFactor();   

 } 

 else 

 { 

  certainty = child.getCertainty() *  

   rule.getCertaintyFactor(); 

  } 

 return solution; 

} 

After calling super.nextSolution(), the method checks if the value 
returned is null, indicating no further solutions were found. If this is the 
case, it returns null to the parent class, indicating this branch of the search 
space is exhausted. 

If there is a solution, the method gets the current rule which was used to 
solve the goal, and also gets the child node in the search space. If the child 
node is null, this indicates a leaf node, and the certainty factor is simply 
that of the associated rule. Otherwise, the method gets the certainty of the 
child and multiplies it by the rule’s certainty factor. It saves the result in the 
member variable certainty. 

Note that this method is synchronized. This is necessary to prevent a 
threaded implementation from interrupting the method between 
computing the solution substitution set, and the associated certainty, as this 
might cause an inconsistency. 

The implementation of the class ESAndSolutionNode follows the 
same pattern, but computes the certainty factor of the node recursively: as 
the minimum of the certainty of the first operand (the head operand) and 
the certainty of the rest of the operands (the tail operands). 
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public class ESAndSolutionNode  

 extends AndSolutionNode  

 implements ESSolutionNode   

{ 

 private double certainty = 0.0; 

    public ESAndSolutionNode(ESAnd goal,  

  RuleSet rules,  

  SubstitutionSet parentSolution)  

 {    

  super(goal, rules, parentSolution); 

 } 

 public synchronized SubstitutionSet  

  nextSolution()         

  throws CloneNotSupportedException 

   { 

   SubstitutionSet solution =  

   super.nextSolution();    

  if(solution == null) 

   { 

    certainty = 0.0; 

    return null; 

   } 

   ESSolutionNode head = (ESSolutionNode)  

   getHeadSolutionNode();    

  ESSolutionNode tail = (ESSolutionNode)  

   getTailSolutionNode();      

  if(tail == null) 

    certainty = head.getCertainty(); 

   else 

    certainty =  

    Math.min(head.getCertainty(),  

       tail.getCertainty());   

  return solution; 

  } 

  public double getCertainty() 

 { 

   return certainty; 

  } 

 }  

This completes the extension of the unification solver to include certainty 
factors. 
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             25.3 Adding User Interactions 

 Another feature common to expert system shells is the ability to ask users 
about the truth of subgoals as determined by the context of the reasoning. 
The basic approach to this is to allow certain expressions to be designated 
as askable. Following the patterns of the earlier sections of this chapter, we 
will define askables as an extension to an existing class. 

Looking at the code defined above, an obvious choice for the base class of 
askable predicates is the ESSimpleSentence class. It makes sense to limit 
user queries to simple sentences, since asking for the truth of a complex 
operation would be confusing to users. However, our approach will define 
Ask as a subset of the Rule class. There are two reasons for this:  

1. In order to query users for the truth of an expression, the system 
will need to access a user interface. Adding user interfaces to 
ESSimpleSentences not only complicates their definition, but 
also it complicates the architecture of the expert system shell by 
closely coupling the interface with knowledge representation 
classes. 

2. So far, our architecture separates knowledge representation syntax 
from semantics, with syntax being defined in descendents of the 
PCExpression interface, and the semantics being defined in the 
nodes of the search tree. User queries are a form of inference (may 
the gods of logic forgive me), and will be handled by them.  

As we will see shortly, defining Ask as an extension of the Rule class 
better supports these design constraints. Although Rule is part of 
representation, it is closely tied to reasoning algorithms in the solution 
nodes, and we have already used it to define certainty factors. Our basic 
scheme will be to modify ESSimpleSentenceSolutionNode as follows: 

1. If a goal matches the head of a rule, it is true if the premise of the 
rule is true; 

2. If a goal matches the head of a rule with no premise, then it is true; 

3. If a goal matches the head of an askable rule, then ask the user if it 
is true. 

Conditions 1 & 2 are already part of the definition of 
ESSimpleSentenceSolutionNode. The remainder of this section will 
focus on adding #3 to its definition. 

Implementing this will require distinguishing if a rule is askable. We will do 
this by adding a boolean variable to the ESRule class: 

public class ESRule extends Rule  

{ 

  private double certaintyFactor; 

  private boolean ask = false; 

               // constructors and certainty factor  

                      // accessors as defined above 
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 public boolean ask() 

 { 

  return ask; 

    } 

    protected void setAsk(boolean value) 

 { 

      ask = value; 

     } 

} 

This definition sets ask to false as a default. We define the subclass Ask as: 
public class ESAsk extends ESRule  

{ 

   public ESAsk(ESSimpleSentence head)  

 { 

   super(head, 0.0); 

   setAsk(true); 

  } 

}  

Note that ESAsk has a single constructor, which enforces the constraint 
that an askable assertion be a simple sentence.  

The next step in adding askables to the expert system shell is to modify the 
method nextSolution() of ESSimpleSentenceSolutionNode to test 
for askable predicates and query the user for their certainty value. The new 
version of nextSolution() is: 

public synchronized SubstitutionSet nextSolution() 

  throws CloneNotSupportedException  

{ 

 SubstitutionSet solution = super.nextSolution(); 

 if(solution == null) 

  { 

   certainty = 0.0; 

   return null; 

 } 

 ESRule rule = (ESRule) getCurrentRule(); 

 if(rule.ask()) 

 { 

  ESFrontEnd frontEnd =  

   ((ESRuleSet)getRuleSet()). 

    getFrontEnd(); 

  certainty = frontEnd.ask((ESSimpleSentence)
      rule.getHead(), solution); 

   return solution; 

  } 
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 ESSolutionNode child =  

  (ESSolutionNode) getChild(); 

 if(child == null) 

 { 

  certainty = rule.getCertaintyFactor(); 

 } 

 else 

 { 

  certainty = child.getCertainty() * 

     rule.getCertaintyFactor(); 

  } 

 return solution; 

} 

We will define ESFrontEnd in an interface: 
public interface ESFrontEnd  

{ 

  public double ask(ESSimpleSentence goal,  

   SubstitutionSet subs); 

}  

Finally, we will introduce a new class, ESRuleSet, to extend RuleSet 
to include an instance of ESFrontEnd: 

public class ESRuleSet extends RuleSet  

{ 

  private ESFrontEnd frontEnd = null; 

   public ESRuleSet(ESFrontEnd frontEnd,  

  ESRule... rules)  

 { 

   super((Rule[])rules); 

   this.frontEnd = frontEnd; 

  } 

  public ESFrontEnd getFrontEnd() 

 { 

   return frontEnd; 

  } 

} 

This is only a partial implementation of user interactions for the expert 
system shell. We still need to add the ability for users to make a top-level 
query to the reasoner, and also the ability to handle “how” and “why” 
queries as discussed in (Luger 2009). We leave these as an exercise. 

             25.4 Design Discussion 

 Although the extension of the unification problem solver into a simple 
expert system shell is, for the most part, straightforward, there are a couple 
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interesting design questions. The first of these was our decision to, as 
much as possible, leave the definitions of descendents of PCExpression 
as unchanged as possible, and place most of the new material in extensions 
to the solution node classes. Our reason for doing this reflects a theoretical 
consideration.  

Logic makes a theoretical distinction between syntax and semantics, 
between the definition of well-formed expressions and the way they are 
used in reasoning. Our decision to define the expert system almost entirely 
through changes to the solution node classes reflects this distinction. In 
making this decision, we are following a general design heuristic that we 
have found useful, particularly in AI implementations: insofar as possible, 
define the class structure of code to reflect the concepts in an underlying 
mathematical theory. Like most heuristics, the reasons for this are intuitive, 
and we leave further analysis to the exercises. 

The second major design decision is somewhat more problematic. This is 
our decision to use the nextSolution method from the unification solver to 
perform the actual search, and compute certainty factors afterwards. The 
benefits of this are in not modifying code that has already been written and 
tested, which follows standard object-oriented programming practice.  

However, in this case, the standard practice leads to certain cons that 
should be considered. One of these is that, once a solution is found, 
acquiring both the variable substitutions and certainty factor requires two 
separate methods: nextSolution and getCertainty. This is error 
prone, since the person using the class must insure that no state changes 
occur between these calls. One solution is to write a convenience function 
that bundles both values into a new class (say ESSolution) and returns 
them. A more aggressive approach would be to ignore the current version 
of nextSolution entirely, and to write a brand new version.  

This is a very interesting design decision, and we encourage the reader to 
try alternative approaches and discuss their trade-offs in the exercises to 
this chapter. 

 Exercises 

 1. Modify the definition of the nextSolution method of the classes 
ESSimpleSolutionNode and ESAndSolutionNode to fail a line of 
reasoning if the certainty factor falls below a certain value (0.2 or 0.3 are 
typical values). Instrument your code to count the number of nodes visited 
and test it both with and without pruning. 

2. Add range checks to all methods and classes that allow certainty factors 
to be set, throwing an exception of the value is not in the range of -1.0 to 
1.0. Either use Java’s built-in IllegalArgumentException or an 
exception class of your own definition. Discuss the pros and cons of the 
approach you choose. 

3. In designing the object model for the unification problem solver, we 
followed the standard AI practice of distinguishing between the 
representation of well-formed expressions (classes implementing the 
interface unifiable) and the definition of the inference strategy in the 
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nodes of the solution tree (descendents of AbstractSolutionNode). 
This chapter’s expert system shell built on that distinction. More 
importantly, because we were not changing the basic inference strategy 
other than to add certainty estimates, we approached the expert system by 
defining subclasses to SimpleSentenceSolutionNode and 
AndSolutionNode, and reusing the existing nextSolution method. If, 
however, we were changing the search strategy drastically, or for other 
reasons discussed in 25.4, it might have been more efficient to retain only 
the representation and rewrite the inference strategy completely. As an 
experiment to explore this option, rewrite the expert system shell without 
using AbstractSolutionNode or any of its descendants. This will give 
you a clean slate for implementing reasoning strategies. Although this does 
not make use of previously implemented code, it may allow making the 
solution simpler, easier to use, and more efficient. Implement an alternative 
solution, and discuss the trade-offs between this approach and that taken 
in the chapter. 

4. Full implementations of certainty factors also allow the combination of 
certainty factors when multiple rules lead to the same goal. I.e., if the goal g 
with subsitituions s is supported by multiple lines of reasoning, what is its 
certainty? (Luger 2009) discusses how to compute these values. Implement 
this approach. 

5. A feature common to expert systems that was not implemented in this 
chapter is the ability to provide explanations of reasoning through How 
and Why queries. As explained in (Luger 2009), How queries explain a fact 
by displaying the proof tree that led to it. Why queries explain why a 
question was asked by displaying the rule that is the current context of the 
question. Implement How and Why queries in the expert system shell, and 
support them through a user-friendly front end. This front-end should also 
allow users to enter queries, inspect rule sets, etc. It should also support 
askable predicates as discussed in the next exercise. 

6. Build a front-end to support user interaction around askable predicates. 
In particular, it should keep track of answers that have been received, and 
avoid asking the same question twice. This means it should keep track of 
both expressions and substitutions that have been asked. An additional 
feature would be to support asking users for actual substitution values, and 
adding them to the substitution set. 

7. Revisit the design decision to, so far as possible, locate our changes in 
the solution node classes, rather than descendants of PCExpression. In 
particular, comment on our heuristic of organizing code to reflect the 
structures implied by logical theory. Did this heuristic of following the 
structure of theory work well in our implementation? Why? Do you believe 
this heuristic to be generalizable beyond logic? Once again, why? 

 

 


