
351

 25 An Expert System Shell

Chapter

Objectives
Completing the meta-interpreter for rule systems in Java
Full backtracking unification algorithm
 A goal-based reasoning shell
 An example rule system demonstration
The extended functionality for building expert systems
 Askable predicates
 Response to how and why queries
 Structure presented for addition of certainty factors

Chapter
Contents

25.1 Introduction: Expert Systems
25.2 Certainty Factors and the Unification Problem Solver
25.3 Adding User Interactions
25.4 Design Discussion

 25.1 Introduction: Expert Systems

 In Chapter 24, we developed a unification-based logic problem solver that
solved queries through a depth-first, backward chaining search. In this
chapter, we will extend those classes to implement two features commonly
found in expert-system shells: the ability to attach confidence estimates, or
certainty factors, to inferences (see Luger 2009 for more on certainty
factors), and the ability to interact with the user during the reasoning
process. Since all the classes in this chapter will extend classes from the
unification problem solver, readers must be sure to have read that chapter
before continuing.

In developing the expert system shell, we have two goals. The first is to
explore the use of simple inheritance to extend an existing body of code.
The second is to provide the reader with a start on more extensive
modifications to the code that will be a valuable learning experience; the
exercises will make several suggestions for such extensions.

Certainty
Factors

The first extension to the reasoner will be to implement a simplified
version of the certainty factor algebra described in Luger (2009). Certainty
factors will be numbers between -1.0 and 1.0 that measure our confidence
in an inference: -1.0 indicates the conclusion is false with maximum
certainty, and 1.0 means it is true with maximum certainty. A certainty
value of 0.0 indicates nothing is known about the assertion. Values
between -1.0 and 1.0 indicate varying degrees of confidence.

Rules have an attached certainty factor, which indicates the certainty of
their conclusion if all elements in the premise are known with complete
certainty. Consider the following rule and corresponding certainty factor:

If p then q, CF = 0.5

352 Part IV: Programming in Java

This means that, if p is true with a confidence of 1.0 (maximum
confidence), then q can be inferred to be true with a confidence of 0.5.
This is the measure of the uncertainty introduced by the rule itself. If our
confidence in p is less, than our confidence in q will be lowered
accordingly.

In the case of the conjunction, or “and,” of two expressions, we compute
the certainty of the conjunction as the minimum of the certainty of the
operands. Note that if we limit certainty values to 1.0 (true) and -1.0 (false),
this reduces to the standard definition of “and.” For the “or” operation,
the certainty of the expressions is the maximum of the certainty of its
individual operands. The “not” operator switches the sign of the certainty
factor of its argument. These are also intuitive extensions of the boolean
meaning of those operators.

Certainty factors propagate upward through the inference chain: given a
rule, we unify the rule premises with matching subgoals. After inferring the
certainties of the individual subgoals, we compute the certainty of the
entire rule premise according to the operators for and, or, and not.
Finally, we multiply the certainty of the premise by the certainty of the rule
to compute the certainty of the rule conclusion.

Generally, certainty factor implementations will prune a line of reasoning if
the certainty value falls below a certain value. A common pruning value is
if the certainty is less than 0.2. This can eliminate many branches of the
search space. We will not include this in the implementation of this
chapter, but will leave it as an exercise.

25.2 Certainty Factors and the Unification Problem Solver

 Our basic design strategy will be to make minimal changes to the
representation of expressions, and to make most of our changes to the
nodes of the solution tree. The reasoning behind this approach is the idea
that the nodes of the solution tree define the inference strategy, whereas
logical expressions simply are a statement about the world that is
independent of its truth or reasoning. As a variation on truth-values, it
follows that we should treat certainty calculations as a part of the system’s
inference strategy, implementing them as extensions to descendents of the
class AbstractSolutionNode. This suggests we take SimpleSentence
and basic operators to represent assertions independently of their certainty,
and avoid changing them to support this new reasoning strategy.

The classes we will define will be in a new package called
expertSystemShell. To make development of the expert system shell
easier to follow, we will name classes in this package by adding the prefix
“ES” to their ancestors in the package unificationSolver defined in
the previous chapter.

Adding
Certainty

Factors to
Expressions

We will support representation of certainty factors as an extension to the
definition of Rule from the unification problem solver. We will define a
new subclass of Rule to attach a certainty factor to the basic
representation. We define ESRule as a straightforward extension of the
Rule class by adding a private variable for certainty values, along with

 Chapter 25 An Expert System Shell 353

standard accessors:
public class ESRule extends Rule

{

 private double certaintyFactor;

 public ESRule(ESSimpleSentence head,

 double certaintyFactor)

 {

 this(head, null, certaintyFactor);

 }

 public ESRule(ESSimpleSentence head, Goal body,

 double certaintyFactor)

 {

 super(head, body);

 this.certaintyFactor = certaintyFactor;

 }

 public double getCertaintyFactor()

 {

 return certaintyFactor;

 }

 protected void setCertaintyFactor(double value)

 {

 this.certaintyFactor = value;

 }

}

Note the two constructors, both of which include certainty factors in their
arguments. The first constructor supports rules with conclusions only;
since a fact is simply a rule without a premise, this allows us to add
certainty factors to facts. The second constructor allows definition of full
rules. An obvious extension to this definition would be to add checks to
make sure certainty factors stay in the range -1.0 to 1.0, throwing an out of
range exception if they are not in range. We leave this as an exercise.

This is essentially the only change we will make to our representation. Most
of our changes will be to the solution nodes in the proof tree, since these
define the reasoning strategy. To support this, we will define subclasses to
both SimpleSentence and And to return the appropriate type of solution
node, as required by the interface Goal (these are all defined in the
preceding chapter). The new classes are:

public class ESSimpleSentence extends SimpleSentence
{

 public ESSimpleSentence(Constant functor,

 Unifiable... args)

 {

 super(functor, args);

 }

354 Part IV: Programming in Java

 public AbstractSolutionNode getSolver(RuleSet

 rules, SubstitutionSet parentSolution)

 {

 return new

 ESSimpleSentenceSolutionNode(this,

 (ESRuleSet)rules, parentSolution);

 }

}

public class ESAnd extends And

{

 public ESAnd(Goal... operands)

 {

 super(operands);

 }

 public ESAnd(ArrayList<Goal> operands)

 {

 super(operands);

 }

 public AbstractSolutionNode getSolver(RuleSet

 rules, SubstitutionSet parentSolution)

 {

 return new ESAndSolutionNode(this, rules,

 parentSolution);

 }

}

These are the only extensions we will make to the representation classes.
Next, we will define reasoning with certainty factors in the classes
ESSimpleSentenceSolutionNode and ESAndSolutionNode.

Reasoning with
Certainty

Factors

Because the certainty of an expression depends on the inferences that led
to it, the certainty factors computed during reasoning will be held in
solution nodes of the proof tree, rather than the expressions themselves.
Thus, every solution node will define at least a goal, a set of variable
substitutions needed to match the goal during reasoning, and the certainty
of that conclusion. The first two of these were implemented in the
previous chapter in the class AbstractSolutionNode, and its
descendents. These classes located their reasoning in the method,
nextSolution(), defined abstractly in AbstractSolutionNode.

 Our strategy will be to use the definitions of nextSolution() from the
classes SimpleSentenceSolutionNode and AndSolutionNode
defined in the previous chapter. So, for example, the basic framework of
ESSimpleSentenceSolutionNode is:

 Chapter 25 An Expert System Shell 355

public class ESSimpleSentenceSolutionNode

 extends SimpleSentenceSolutionNode

 implements ESSolutionNode

{

 private double certainty = 0.0; //default value

 public ESSimpleSentenceSolutionNode(

 ESSimpleSentence goal, ESRuleSet rules,

 SubstitutionSet parentSolution)

 {

 super(goal, rules, parentSolution);

 }

 public synchronized SubstitutionSet

 nextSolution()

 throws CloneNotSupportedException

 {

 SubstitutionSet solution =

 super.nextSolution();

 // Compute certainty factor for the solution

 // (see below)

 return solution;

 }

 public double getCertainty()

 {

 return certainty;

 }

 }

This schema, which will be the same for the ESAndSolutionNode,
defines ESSimpleSentenceSolutionNode as a subclass of the
SimpleSentenceSolutionNode, adding a member variable for the
certainty associated with the current goal and substitution set. When
finding the next solution for the goal, it will call nextSolution() on the
parent class, and then compute the associated certainty factor.

The justification for this approach is that the unification problem solver of
chapter 24 will find all valid solutions (i.e. sets of variable substitutions) to
a goal through unification search. Adding certainty factors does not lead to
new substitution sets – it only adds further qualifications on our
confidence in those inferences. Note that this does lead to questions
concerning logical not: if the reasoner cannot find a set of substitutions
that make a goal true under the unification problem solver, should it fail or
succeed with a certainty of -1.0? For this chapter, we are avoiding such
semantic questions, but encourage the reader to probe them further.

We complete the definition of nextSolution() as follows

356 Part IV: Programming in Java

public synchronized SubstitutionSet nextSolution()

 throws CloneNotSupportedException

{

 SubstitutionSet solution = super.nextSolution();

 if(solution == null)

 {

 certainty = 0.0;

 return null;

 }

 ESRule rule = (ESRule) getCurrentRule();

 ESSolutionNode child =

 (ESSolutionNode) getChild();

 if(child == null)

 {

 // the rule was a simple fact

 certainty = rule.getCertaintyFactor();

 }

 else

 {

 certainty = child.getCertainty() *

 rule.getCertaintyFactor();

 }

 return solution;

}

After calling super.nextSolution(), the method checks if the value
returned is null, indicating no further solutions were found. If this is the
case, it returns null to the parent class, indicating this branch of the search
space is exhausted.

If there is a solution, the method gets the current rule which was used to
solve the goal, and also gets the child node in the search space. If the child
node is null, this indicates a leaf node, and the certainty factor is simply
that of the associated rule. Otherwise, the method gets the certainty of the
child and multiplies it by the rule’s certainty factor. It saves the result in the
member variable certainty.

Note that this method is synchronized. This is necessary to prevent a
threaded implementation from interrupting the method between
computing the solution substitution set, and the associated certainty, as this
might cause an inconsistency.

The implementation of the class ESAndSolutionNode follows the
same pattern, but computes the certainty factor of the node recursively: as
the minimum of the certainty of the first operand (the head operand) and
the certainty of the rest of the operands (the tail operands).

 Chapter 25 An Expert System Shell 357

public class ESAndSolutionNode

 extends AndSolutionNode

 implements ESSolutionNode

{

 private double certainty = 0.0;

 public ESAndSolutionNode(ESAnd goal,

 RuleSet rules,

 SubstitutionSet parentSolution)

 {

 super(goal, rules, parentSolution);

 }

 public synchronized SubstitutionSet

 nextSolution()

 throws CloneNotSupportedException

 {

 SubstitutionSet solution =

 super.nextSolution();

 if(solution == null)

 {

 certainty = 0.0;

 return null;

 }

 ESSolutionNode head = (ESSolutionNode)

 getHeadSolutionNode();

 ESSolutionNode tail = (ESSolutionNode)

 getTailSolutionNode();

 if(tail == null)

 certainty = head.getCertainty();

 else

 certainty =

 Math.min(head.getCertainty(),

 tail.getCertainty());

 return solution;

 }

 public double getCertainty()

 {

 return certainty;

 }

 }

This completes the extension of the unification solver to include certainty
factors.

358 Part IV: Programming in Java

 25.3 Adding User Interactions

 Another feature common to expert system shells is the ability to ask users
about the truth of subgoals as determined by the context of the reasoning.
The basic approach to this is to allow certain expressions to be designated
as askable. Following the patterns of the earlier sections of this chapter, we
will define askables as an extension to an existing class.

Looking at the code defined above, an obvious choice for the base class of
askable predicates is the ESSimpleSentence class. It makes sense to limit
user queries to simple sentences, since asking for the truth of a complex
operation would be confusing to users. However, our approach will define
Ask as a subset of the Rule class. There are two reasons for this:

1. In order to query users for the truth of an expression, the system
will need to access a user interface. Adding user interfaces to
ESSimpleSentences not only complicates their definition, but
also it complicates the architecture of the expert system shell by
closely coupling the interface with knowledge representation
classes.

2. So far, our architecture separates knowledge representation syntax
from semantics, with syntax being defined in descendents of the
PCExpression interface, and the semantics being defined in the
nodes of the search tree. User queries are a form of inference (may
the gods of logic forgive me), and will be handled by them.

As we will see shortly, defining Ask as an extension of the Rule class
better supports these design constraints. Although Rule is part of
representation, it is closely tied to reasoning algorithms in the solution
nodes, and we have already used it to define certainty factors. Our basic
scheme will be to modify ESSimpleSentenceSolutionNode as follows:

1. If a goal matches the head of a rule, it is true if the premise of the
rule is true;

2. If a goal matches the head of a rule with no premise, then it is true;

3. If a goal matches the head of an askable rule, then ask the user if it
is true.

Conditions 1 & 2 are already part of the definition of
ESSimpleSentenceSolutionNode. The remainder of this section will
focus on adding #3 to its definition.

Implementing this will require distinguishing if a rule is askable. We will do
this by adding a boolean variable to the ESRule class:

public class ESRule extends Rule

{

 private double certaintyFactor;

 private boolean ask = false;

 // constructors and certainty factor

 // accessors as defined above

 Chapter 25 An Expert System Shell 359

 public boolean ask()

 {

 return ask;

 }

 protected void setAsk(boolean value)

 {

 ask = value;

 }

}

This definition sets ask to false as a default. We define the subclass Ask as:
public class ESAsk extends ESRule

{

 public ESAsk(ESSimpleSentence head)

 {

 super(head, 0.0);

 setAsk(true);

 }

}

Note that ESAsk has a single constructor, which enforces the constraint
that an askable assertion be a simple sentence.

The next step in adding askables to the expert system shell is to modify the
method nextSolution() of ESSimpleSentenceSolutionNode to test
for askable predicates and query the user for their certainty value. The new
version of nextSolution() is:

public synchronized SubstitutionSet nextSolution()

 throws CloneNotSupportedException

{

 SubstitutionSet solution = super.nextSolution();

 if(solution == null)

 {

 certainty = 0.0;

 return null;

 }

 ESRule rule = (ESRule) getCurrentRule();

 if(rule.ask())

 {

 ESFrontEnd frontEnd =

 ((ESRuleSet)getRuleSet()).

 getFrontEnd();

 certainty = frontEnd.ask((ESSimpleSentence)
 rule.getHead(), solution);

 return solution;

 }

360 Part IV: Programming in Java

 ESSolutionNode child =

 (ESSolutionNode) getChild();

 if(child == null)

 {

 certainty = rule.getCertaintyFactor();

 }

 else

 {

 certainty = child.getCertainty() *

 rule.getCertaintyFactor();

 }

 return solution;

}

We will define ESFrontEnd in an interface:
public interface ESFrontEnd

{

 public double ask(ESSimpleSentence goal,

 SubstitutionSet subs);

}

Finally, we will introduce a new class, ESRuleSet, to extend RuleSet
to include an instance of ESFrontEnd:

public class ESRuleSet extends RuleSet

{

 private ESFrontEnd frontEnd = null;

 public ESRuleSet(ESFrontEnd frontEnd,

 ESRule... rules)

 {

 super((Rule[])rules);

 this.frontEnd = frontEnd;

 }

 public ESFrontEnd getFrontEnd()

 {

 return frontEnd;

 }

}

This is only a partial implementation of user interactions for the expert
system shell. We still need to add the ability for users to make a top-level
query to the reasoner, and also the ability to handle “how” and “why”
queries as discussed in (Luger 2009). We leave these as an exercise.

 25.4 Design Discussion

 Although the extension of the unification problem solver into a simple
expert system shell is, for the most part, straightforward, there are a couple

 Chapter 25 An Expert System Shell 361

interesting design questions. The first of these was our decision to, as
much as possible, leave the definitions of descendents of PCExpression
as unchanged as possible, and place most of the new material in extensions
to the solution node classes. Our reason for doing this reflects a theoretical
consideration.

Logic makes a theoretical distinction between syntax and semantics,
between the definition of well-formed expressions and the way they are
used in reasoning. Our decision to define the expert system almost entirely
through changes to the solution node classes reflects this distinction. In
making this decision, we are following a general design heuristic that we
have found useful, particularly in AI implementations: insofar as possible,
define the class structure of code to reflect the concepts in an underlying
mathematical theory. Like most heuristics, the reasons for this are intuitive,
and we leave further analysis to the exercises.

The second major design decision is somewhat more problematic. This is
our decision to use the nextSolution method from the unification solver to
perform the actual search, and compute certainty factors afterwards. The
benefits of this are in not modifying code that has already been written and
tested, which follows standard object-oriented programming practice.

However, in this case, the standard practice leads to certain cons that
should be considered. One of these is that, once a solution is found,
acquiring both the variable substitutions and certainty factor requires two
separate methods: nextSolution and getCertainty. This is error
prone, since the person using the class must insure that no state changes
occur between these calls. One solution is to write a convenience function
that bundles both values into a new class (say ESSolution) and returns
them. A more aggressive approach would be to ignore the current version
of nextSolution entirely, and to write a brand new version.

This is a very interesting design decision, and we encourage the reader to
try alternative approaches and discuss their trade-offs in the exercises to
this chapter.

 Exercises

 1. Modify the definition of the nextSolution method of the classes
ESSimpleSolutionNode and ESAndSolutionNode to fail a line of
reasoning if the certainty factor falls below a certain value (0.2 or 0.3 are
typical values). Instrument your code to count the number of nodes visited
and test it both with and without pruning.

2. Add range checks to all methods and classes that allow certainty factors
to be set, throwing an exception of the value is not in the range of -1.0 to
1.0. Either use Java’s built-in IllegalArgumentException or an
exception class of your own definition. Discuss the pros and cons of the
approach you choose.

3. In designing the object model for the unification problem solver, we
followed the standard AI practice of distinguishing between the
representation of well-formed expressions (classes implementing the
interface unifiable) and the definition of the inference strategy in the

362 Part IV: Programming in Java

nodes of the solution tree (descendents of AbstractSolutionNode).
This chapter’s expert system shell built on that distinction. More
importantly, because we were not changing the basic inference strategy
other than to add certainty estimates, we approached the expert system by
defining subclasses to SimpleSentenceSolutionNode and
AndSolutionNode, and reusing the existing nextSolution method. If,
however, we were changing the search strategy drastically, or for other
reasons discussed in 25.4, it might have been more efficient to retain only
the representation and rewrite the inference strategy completely. As an
experiment to explore this option, rewrite the expert system shell without
using AbstractSolutionNode or any of its descendants. This will give
you a clean slate for implementing reasoning strategies. Although this does
not make use of previously implemented code, it may allow making the
solution simpler, easier to use, and more efficient. Implement an alternative
solution, and discuss the trade-offs between this approach and that taken
in the chapter.

4. Full implementations of certainty factors also allow the combination of
certainty factors when multiple rules lead to the same goal. I.e., if the goal g
with subsitituions s is supported by multiple lines of reasoning, what is its
certainty? (Luger 2009) discusses how to compute these values. Implement
this approach.

5. A feature common to expert systems that was not implemented in this
chapter is the ability to provide explanations of reasoning through How
and Why queries. As explained in (Luger 2009), How queries explain a fact
by displaying the proof tree that led to it. Why queries explain why a
question was asked by displaying the rule that is the current context of the
question. Implement How and Why queries in the expert system shell, and
support them through a user-friendly front end. This front-end should also
allow users to enter queries, inspect rule sets, etc. It should also support
askable predicates as discussed in the next exercise.

6. Build a front-end to support user interaction around askable predicates.
In particular, it should keep track of answers that have been received, and
avoid asking the same question twice. This means it should keep track of
both expressions and substitutions that have been asked. An additional
feature would be to support asking users for actual substitution values, and
adding them to the substitution set.

7. Revisit the design decision to, so far as possible, locate our changes in
the solution node classes, rather than descendants of PCExpression. In
particular, comment on our heuristic of organizing code to reflect the
structures implied by logical theory. Did this heuristic of following the
structure of theory work well in our implementation? Why? Do you believe
this heuristic to be generalizable beyond logic? Once again, why?

